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Polymer solutions with a concentration-dependent interaction parameter g(ϕ) are known to have
sometimes critical polymer concentrations ϕc converging to a non-zero value (a so-called “off-zero”
limiting critical point (CP)), as the chain length, m, grows to infinity, rather than to zero as usual
(a “zero” limiting CP). In this report the criteria for the existence of both types, known for binary
solutions with a linear g = g0 + g1ϕ, are extended to cover polydisperse polymers with a quadratic
interaction function g(ϕ). Its coefficients g2 and ∆g2 ≡ g2 – g1 determine the number and type of limi-
ting CPs. Accordingly, the plane g2, ∆g2 is divided into the regions I (a zero CP), II (an off-zero CP),
and III (a zero + two off-zero CPs). The region II is restricted to the half-plane with ∆g2 < –1/6,
whereas the other half-plane with ∆g2 > –1/6 is shared by I and III. By varying the interactions, two
limiting CPs may be brought together and merged in a heterogeneous double limiting CP. Such in-
stances define the boundaries between the regions: at the I/III line, two off-zero CPs merge, whereas
at the II/III line an off-zero CP coincides with a zero CP. A first-order perturbation theory of the
latter double CPs, and a second-order perturbation theory of single “zero” CPs are developed, enabling
meaningful extrapolations of data on polymers with high but finite molar masses. The latter theory
yields extrapolation formulas for determination of Θ-temperature, taking into account the polymer
polydispersity and the concentration dependence of g. Solutions of polyisobutene in diphenyl ether and,
possibly, in benzene appear to present experimental examples of off-zero limiting critical concentrations.

In the original Flory–Huggins–Staverman (FHS) systems1–6 with a concentration-inde-
pendent interaction parameter g, the behavior of the critical point (CP) for solutions of
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polymers with very high molar mass M (and chain length m) is trivial: in the limit for
m → ∞, the critical polymer concentration, ϕc, goes to zero, and the critical value of the
interaction parameter, gc, approaches 1/2. The situation is more complex when the in-
teraction parameter g depends on polymer concentration ϕ as often happens, particularly in
systems with strong interactions7. If the zero limiting root (i.e., root with ϕc → 0 as
m → ∞) is found at all, it is usually displaced from its classical position at gc → 1/2.
Furthermore, another non-zero critical concentration (or two) sometimes appears,
representing an off-zero limiting CP (ref.8). Although, strictly speaking, the two ita-
licized qualifiers apply only to the limits for m → ∞, it is convenient to use them for
finite m as well to characterize the CPs leading to one or the other limit. When em-
ployed in the latter broader sense, these terms will be distinguished by quotation marks.

Flory and Daoust9 first drew attention to the problem in an experimental study of the
system benzene–poly(2-methylpropene) in which the effect was noticed from values of
the interaction parameters determined by osmotic pressure measurements. The authors
noted that the experimental errors involved make a decision about the actual occurrence
of the phenomenon difficult. A quite convincing example was presented a few years
later by Dusek10 who studied the system aliphatic alcohol–poly(2-hydroxyethyl methacry-
late). Its cross-linked analogue was also one of the systems in which Sedlacek et al.11

investigated by light-scattering techniques inhomogeneities in gels induced by micro-
phase separation or by the cross-linking process. The problem of off-zero limiting CPs
was also investigated in studies of poly(2-methylpropene) dissolved in benzene12 and in
diphenyl ether13. Recent work on the system water–poly(N-isopropylacrylamide) indi-
cates that even in this case an off-zero critical concentration for infinitely long chains
may occur, which phenomenon may also be behind the observed demixing of swollen
cross-linked polymer phases14. The system water–poly(vinyl methyl ether) appears to
present another case in point, while preliminary data on the system 2-nonanone–
poly(methyl methacrylate) indicate that the latter might present an example of type III
behavior with a “zero” plus two “off-zero” CPs (ref.15).

Although for the special case of a monodisperse polymer solution with linearly-de-
pendent interaction parameter, χ = χ1 + χ2ϕ, this phenomenon was analyzed by Dusek
more than 25 years ago10, it seems to be remaining a well kept secret for the polymer
community at large, as occasional conversations with its members clearly suggest. In
this paper the above issue is reexamined under broader conditions, particularly for
polymers polydisperse in their molar mass, and for interaction functions with stronger
than linear concentration dependence. The criteria for the existence of both types of
limiting CPs are derived, and their validity is confirmed by some numerically computed
examples. Also, perturbation theories of “zero” CPs and of “zero” heterogeneous
double CPs are developed for systems with high, but not infinite, polymer molar
masses.
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In order to avoid excessive cluttering of equations with indices, the subscript c specifying
the critical state values will be omitted at g-related derivatives and coefficients.

THEORETICAL

We start our analysis from the familiar relations for the spinodal and the critical con-
centration16,17

[ϕc/(1 − ϕc)] + ϕc[−2gc + 2(1 − 2ϕc)g(1) + ϕc(1 − ϕc)g(2)] + mw
−1 = 0  , (1)

[ϕc/(1 − ϕc)]2 + ϕc
2 [−6g(1) + 3(1 − 2ϕc)g(2) + ϕc(1 − ϕc)g(3)] − mz/mw

2  = 0  , (2)

where ϕc is the critical volume fraction of the polydisperse polymer, and mw and mz are
its weight- and z-average chain lengths. The concentration-dependent interaction func-
tion, g ≡ g(ϕ,T), introduced in the FHS lattice theory, is defined in terms of the free
energy of mixing, and g(i) denotes its i-th concentration derivative, g(i) ≡ (∂gi/∂ϕi)T.
Dusek’s results10, on the other hand, are expressed in terms of the interaction parameter χ
defined by the chemical potential of the solvent. For a linearly-dependent parameter g,
the two are related by equations18:

g = g0 + g1ϕ             χ = χ1 + χ2ϕ

g0 = χ1 + χ2/2            χ1 = g0 − g1 (3a)

g1 = χ2/2                    χ2 = 2g1  .

“Zero” Critical Points

Since the focus here is on the very dilute region, ϕ → 0, it is particularly advantageous
to express g as a power series

g = ∑ 
i = 0

k

gi ϕi (3b)

with the derivatives
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g(1) = ∑ 
i = 1

k

igi ϕi − 1  ,      g(2) = ∑ 
i = 2

k

i(i − 1)gi ϕi − 2  , etc. (3c)

Each gi may be a function of temperature.
By expanding the denominators of the first terms and by substituting for g(j) from Eq. (3c),

the critical conditions (1) and (2) take the form

ϕc [1 + 2 ∆g1 + ϕc(1 + 6 ∆g2) + ϕc
2(1 + 12 ∆g3) + O(ϕc

3)] + mw
−1 = 0  , (4a)

ϕc
2 [1 + 6 ∆g2 + 2ϕc(1 + 12 ∆g3) + O(ϕc

2)] − ζ/mw = 0  , (5a)

where ∆gi stands for the difference of two consecutive coefficients, i.e., ∆g1 ≡ g1 – g0,
∆g2 ≡ g2 – g1, etc., and ζ denotes the ratio mz/mw. It is interesting to note that only the
coefficient’s differences, ∆gi, but not their separate values, appear in both equations.
This circumstance has unwelcome consequences for the evaluation of interaction coef-
ficients from critical data (see below).

Mere consideration of signs in each of the Eqs (4a) and (5a) alone puts already limits
on the existential boundaries of “zero” CPs. Since both the ϕc and chain-length aver-
ages mq are positive, the above two equations can be satisfied for ϕc approaching 0 only
if, at the critical temperature,

1 + 2 ∆g1 ≤ 0  ,     or,     g0 ≥ (1/2) + g1  , (6a)

and

1 + 6 ∆g2 ≥ 0  ,     or,    g2 ≥ g1 − (1/6)  . (7)

In fact, simultaneous consideration of Eqs (4a) and (5a) shows (Appendix I) that in the
limit of mw → ∞, the condition for ∆g1 is even narrower than that: the relation (6a) is
limited strictly to equality, i.e.,

1 + 2 ∆g1 = 0  ,     or,     g0 = (1/2) + g1  . (6b)
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Zero limiting CPs are thus restricted to the region ∆g2 ≥ –1/6, essentially regardless
of higher coefficients gi, i > 2. More significantly, they also have to satisfy Eq. (6b),
indicating that the traditional value of 1/2 has to be assumed by the difference g0 – g1,
not simply by g0 or gc (except for the trivial case where g1 = 0). Equations (6b) and (7)
reproduce Dusek’s Eq. (8b) (ref.10) derived for a linearly dependent g(ϕ). The present
derivation, however, is general, valid for any interaction function g(ϕ).

Note that when discussing criteria of this nature, we tacitly assume that the tempera-
ture T can always be adjusted to make g0(T) fit the required relation for it (in this
instance Eq. (6b)). This may not always be possible in practice where, for a given
system under consideration, the required g0 may lie outside the experimentally ac-
cessible range. 

It is well known that for monodisperse polymers with a constant interaction para-
meter g ≡ g0 ≡ χ of the form

g0 = α + 
β
T

 = 
1
2

 + Ψ


Θ
T

 − 1




(8a)

the “zero” critical temperatures are predicted19,20 to obey the relation

Tc
−1 = Θ−1 + (ΘΨ)−1[m−1/2 + (2m)−1]  . (9a)

Thus a simple linearized plot of Tc
−1 vs the expression in brackets of Eq. (9a) yields the

thermodynamic parameters Θ and Ψ characterizing the system. Equation (8a) also
guarantees that at the temperature T = Θ the parameter χ assumes the value of 1/2, i.e.,
the second virial coefficient A2 equals 0.

It is obvious that for polydisperse systems with an interaction function g(ϕ), the
resolution of critical variables will not be that simple. As shown by Dusek for monodis-
perse polymers10, linear interactions alone of the type gi = αi + βi/T, i = 0, 1, lead
already to an uncomfortable quartic equation for the critical concentration ϕc. For inter-
action functions stronger yet, a perturbation approach seems to be the only one feasible
(other than numerical iteration in more than one variable).

The perturbation theory of “zero” critical roots for solutions of high-molar mass
polydisperse polymers with any g(ϕ) function can be developed from Eqs (4a) and (5a)
(see Appendix I). Since it is more convenient to work with finite nonvanishing quan-
tities, we introduce the scaled variables

Φ ≡ ϕcmw
1/2    and     Γ ≡ −(1 + 2 ∆g1)mw

1/2  , (10)
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where Γ ≥ 0. Then the second-order result for the critical concentration can be written
(cf. Eq. (A1.2)) as

Φ ≈ 




ζ
1 + 6 ∆g2





1/2

 



1 + (ζ/mw)1/2 

1 + 12 ∆g3

(1 + 6 ∆g2)3/2





−1

  . (11a)

Similarly, the second-order perturbation form of the condition (4a) for a “zero” CP is
obtained from Eq. (A1.5) as

Γ ≈ (ζ1/2 + ζ−1/2) (1 + 6 ∆g2)1/2 + 
1 + 12 ∆g3

(1 + 6 ∆g2)mw
1/2  . (12)

It is satisfying to see that our approximate formulas (11a) and (12) developed by this
method for polydisperse polymers with a concentration-dependent interaction function
g(ϕ), reproduce the exact results for systems with a constant parameter g ≡ g0 obtained
years ago. Specifically, Eq. (11a) reduces to the Stockmayer’s critical concentration
formula16

ϕc = 
mz

1/2/mw

1 + mz
1/2/mw

  , (11b)

whereas Eq. (12) yields for monodisperse fractions with g ≡ g0 the Shultz–Flory extra-
polation formula (9a). Hence, the approximations contained in Eqs (11a) and (12)
should concern only the effects of polydispersity (Eq. (12)) and of the concentration
dependence of g(ϕ) (Eqs (11a) and (12)).

In the following we shall discuss the Shultz–Flory-type extrapolations for two more
realistic cases. First, with interactions still kept constant, the effect of polydispersity
alone on Eq. (9a) is simple: Equation (12) shows that the extrapolation procedure re-
mains the same except for modification of the bracketed term plotted on the x-axis.
Equation (9a) now becomes a function of both the weight- and z-average chain lengths

Tc
−1 = Θ−1 + (ΘΨ)−1 





ζ1/2 + ζ−1/2

2mw
1/2  + 

1
2mw




  . (9b)

Compared to a “monodisperse” plot employing the weight-average mw for m in Eq. (9a),
polydispersity thus shifts the plotted points to higher x-values, since the function
Z(ζ) ≡ (ζ1/2 + ζ–1/2)/2 is always greater than 1 for ζ ≡ mz/mw > 1. Inspection of Z(ζ)
shows, however, that the simple plot (9a) with m = mw is remarkably tolerant of poly-
dispersity, and for reasonably good fractions the ζ-correction should not be very sub-
stantial. It is applied only to the more significant first term mw

−1/2, and it increases slowly

1666 Solc, Dusek, Koningsveld, Berghmans:

Collect. Czech. Chem. Commun. (Vol. 60) (1995)



with growing relative “ζ-polydispersity” ∆ζ ≡  ζ – 1 = (mz – mw)/mw, as follows from
the series expansion

Z(ζ) = 1 + [(∆ζ)2/8] [1 – ∆ζ + (15/16) (∆ζ)2 – …].

Even for a relatively large ζ = 2, i.e., mz = 2mw, Z(ζ) would increase merely by  ≈6%
to 1.061. This insensitivity has to be at least partly responsible for traditionally good
fits obtained with Eq. (9a), even when using data on polymer fractions of undetermined
(and probably varying) polydispersity.

It should be noted that the effect of polymer polydispersity on the Shultz–Flory
extrapolation formula, Eq. (9a), has been studied before, although under quite different
circumstances: Based on an empirical fit of numerically generated data, Shultz20 ana-
lyzed the polydispersity effect for polymers with Schultz–Flory distribution of molar
mass, assuming that the easier measurable precipitation threshold data were employed
instead of the hard-to-obtain true critical data.

For the most general case, we first redefine Eq. (8a) as

g0 − g1 ≡ 
1
2

 + Ψ


Θ
T

 − 1



  . (8b)

Since the relation χ1 ≡ g0 – g1 of Eq. (3a) holds in fact for any interaction polynomial
function g(ϕ) (ref.18) it is apparent that with the above definition (8b), the A2 is guaran-
teed to be zero at T = Θ where ∆g1 + 1/2 = 0. Also, Eq. (12) together with the definition
of Γ (Eq. (10)) and Eq. (8b) indicate that such a point will mark the critical temperature
of a polymer with m → ∞. Thus, one can conclude that in case of “zero” CPs, the
temperature obtained by correct extrapolation of Tcs for m → ∞ is identical to the
Θ-temperature where A2 = 0, independently of nature of the interaction function. For
linearly dependent χ, the same conclusion was reached earlier by Dusek10.

With the definition (8b), the approximate Eq. (12) yields the equivalent of Eq. (9a)
in the form

Tc
−1 ≈ Θ−1 + (ΘΨ)−1 





ζ1/2 + ζ−1/2

2mw
1/2  (1 + 6 ∆g2)1/2 + 

1 + 12 ∆g3

2mw(1 + 6 ∆g2)



  . (9c)

Equations (8b) and (9c) remind us again (just as noted below Eq. (5a)) that analysis of
critical data alone, however accurate the data is, cannot provide values of separate
interaction coefficients; at best, one can hope for obtaining their differences ∆g1, ∆g2

and ∆g3. In reality, even that feat may be too much to ask. Evidently, with two un-
known interaction terms present in the bracket of Eq. (9c), this relation alone contains
too many unknowns to permit their full determination. However, a resolution is
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possible if also critical concentration data of sufficient accuracy are utilized, and if the
higher differences of interaction coefficients, ∆gi, i > 1, are independent of temperature
(an often employed assumption). Equation (11a) can be rearranged to read

ζ1/2

Φ  ≈ (1 + 6 ∆g2)1/2 + 
1 + 12 ∆g3

1 + 6 ∆g2
 
ζ1/2

mw
1/2  . (11c)

Hence, the ϕc data should be linearized by plotting mz
1/2/(ϕcmw) vs (ζ/mw)1/2 ≡ mz

1/2/mw,
yielding an intercept of (1 + 6 ∆g2)1/2 and a slope of (1 + 12 ∆g3)/(1 + 6 ∆g2). Further-
more, the ∆g2 and ∆g3 terms thus resolved can now be used to evaluate the bracket of
Eq. (9c). Finally, plotting the Tc

−1 vs the said bracket should result again in a linear plot,
with the familiar intercept of Θ–1 and the slope of (ΘΨ)–1.

The situation is no better when the original expanded series of Eqs (4a) and (5a) are
used for data treatment. Neglecting the higher-order terms, Eq. (5a) can be rearranged
as

ζ/mwϕc
2 ≈ 1 + 6 ∆g2 + 2ϕc(1 + 12 ∆g3) (5b)*

and used to linearize critical concentration data by plotting mz/(mwϕc)
2 vs ϕc, with an

intercept of (1 + 6 ∆g2) and a slope of 2(1 + 12 ∆g3). The resolved interaction terms ∆g2

and ∆g3 could then be used to evaluate the bracketed ϕc coefficient in the recast form of
Eq. (4a):

Tc
−1 ≈ Θ−1 + (ΘΨ)−1{(2ϕcmw)−1 + ϕc[1 + 6 ∆g2 + ϕc(1 + 12 ∆g3)]/2}  . (4b)

Plotting of Tc
−1 vs the expression in the braces of Eq. (4b) should then yield a linear

graph with the same intercept and slope as those of Eq. (9c). Again, the resolution of
unknown gi coefficient is not complete.

Although the relations (4b) and (5b), based directly on the series (4a) and (5a) con-
tain fewer approximations than their twins (9c) and (11c), it remains an open question
which ones are more effective for data treatment; only their comparison with actual
experimental data can yield the answer. Furthermore, it is not clear whether experimen-
tal errors would allow significant figures to arise from such analyses, unless the typical
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experimental data accuracy is enhanced. Also, note that for polydisperse polymers the
present study assumes true critical data being available, i.e., it does not provide at all
for an error committed by employing the easier-to-obtain precipitation threshold data
instead of the critical ones17–20.

“Off-zero” Critical Points

The origin of this type of critical point is apparent from the rearranged form of Eqs (1)
and (2). For instance, Eq. (2) may be written as

ϕc
2 [(1 − ϕc)−2 − 6g(1) + 3(1 − 2ϕc)g(2) + ϕc(1 − ϕc)g(3)] − mz/mw

2  = 0  . (13)

Evidently for mw → ∞ with ζ finite, Eq. (13) can be satisfied not only by ϕc → 0 (the
classical zero root) but also if its bracket approaches zero, i.e.,

(1 − ϕc)−2 − 6g(1) + 3(1 − 2ϕc)g(2) + ϕc(1 − ϕc)g(3) = 0  . (14)

Similarly, Eq. (1) yields another condition

(1 − ϕc)−1 − 2gc + 2(1 − 2ϕc)g(1) + ϕc(1 − ϕc)g(2) = 0  . (15)

Note that for the original Flory’s constant parameter g ≡ g0 this alternative leads to a
physically impossible situation: Eq. (14) would require that ϕc diverge. In other words,
an off-zero limiting CP can never appear in original FHS systems. Only the concentra-
tion-dependent interactions can bring it into the physical concentration range (0,1).
Also, the general Eq. (15) contains no requirement that g0 – g1 be equal to 1/2, i.e., the
off-zero limiting critical temperature is not identical to the Θ-temperature where the
second virial coefficient vanishes. The same conclusion was reached earlier for systems
with linear interactions9,10.

In the general case, Eqs (14) and (15) are too complex to draw any simple criteria
from them, and they have to be numerically examined for each particular case to see
whether there are any physically relevant roots. However, some analysis is feasible for
the special case where the interaction function g(ϕ) is expressed as a power series, Eq. (3b),
no stronger than quadratic. As shown in the Appendix II, several regimes can be distin-
guished in such a case, differing by the number of off-zero limiting CPs present in the
system. Existential boundaries of these regimes in the space of interaction parameters
g2 and ∆g2 are shown in Fig. 1 and discussed below:
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1. For ∆g2 < –1/6, Eq. (14) has one physically significant (i.e., within the range 0 < ϕc < 1)
root for any value of g2 (region II).

2. For ∆g2 > –1/6, the number of relevant roots of Eq. (14) depends on g2:
2.1. For g2 < 1/12, there are no such roots (region I).
2.2. For g2 > 1/12, the number of such roots depends on the value of ∆g2 relative to

the criterion G(g2) defined as

G(g2) ≡ 4g2 − (12g2)2/3 /2  . (16)

2.2.1. There are no such roots if ∆g2 > G (region I).
2.2.2. For ∆g2 = G, Eq. (14) has a double root at

ϕc = 1 − (12g2)−1/3 (17)

(the boundary between I and III).
2.2.3. For –1/6 < ∆g2 < G, Eq. (14) has two single roots, typically one smaller and

one greater than ϕc of Eq. (17) (region III).
The usefulness of relations derived for a quadratic g(ϕ) may be greater than realized

at first sight. Since in the neighborhood of CPs the compositions of the coexisting
phases are usually close to each other, the second-order expansion of any interaction

0.0            0.2            0.4            0.6            0.8            1.0g2

 1.6

 1.2

 0.8

 0.4

 0.0

–0.4

∆g2 I

NO ROOT

TWO ROOTS       III

0.563

0.519

0.450

0.307

0

SINGLE ROOTII

0

FIG. 1
Existential boundaries of various off-zero limiting CPs in the plane of interaction parameter coeffi-
cients g2, ∆g2 for systems with a quadratic interaction function g(ϕ). Numbers specify the concentra-
tions ϕc of HEDLCPs; Roman numerals mark various regions; the zero CPs present for ∆g2 > –1/6 in
I and III are not included
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function g(ϕ) in the critical region should be a good enough approximation to yield
reasonable results.

RESULTS AND DISCUSSION

Linearly Dependent Interaction Parameter

In this case one has

g = g0 + g1ϕ  ,         gi = 0   for   i ≥ 2  . (18)

From earlier work10,21 it is anticipated that only one critical point should exist under
these conditions. This expectation is confirmed by the criteria derived above. From Eq.
(7) it is apparent that the zero critical root will appear for a polymer with M → ∞ only
if

g1 ≤ 1/6  . (19)

On the other hand, according to Eq. (14) the off-zero limiting critical point requires that

6g1 = (1 − ϕc)−2 (20)

which in effect means that g1 cannot be lower than 1/6. Thus the case with g1 = 1/6
takes on the crucial role of a transition between zero and off-zero limiting CPs. For
instance, in a sequence of systems with M → ∞ and g1 gradually increasing from nega-
tive to positive values, the CP keeps adjusting its Tc to maintain g0 = g1 + 1/2 (cf. Eq. (6b)),
but stays anchored at zero polymer concentration as long as g1 ≤ 1/6. Only then it
detaches from ϕc = 0 and starts moving to off-zero concentrations, with the actual value
of ϕc always consistent with Eq. (20). In the diagram of Fig. 1, representative points of
such a sequence of systems would spread from top to bottom along the vertical passing
through g2 = 0, crossing from I (no off-zero CP, one zero CP) directly to II (one off-zero CP,
no zero CP).

The relation between the critical interaction coefficients and the critical concentra-
tion for both zero and off-zero limiting CPs is illustrated in Fig. 2. The left portion of
the figure shows the linear dependence between gc ≡ g0 and g1 (cf. Eq. (6b)) in the range
g1 < 1/6 where the CP stays anchored at zero concentration, ϕc = 0. The right-hand side,
on the other hand, displays the triplet of interaction terms, gc, g0 and g1, required for an
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off-zero limiting CP of concentration ϕc, where 0 < ϕc < 1. Equations (15), (18) and
(20) were used to compute the curves. Note that both types of systems have just one
degree of freedom: e.g., by choosing g1 (for zero CPs) or ϕc (for off-zero CPs), all
remaining quantities are fixed. It is interesting that for both types of CPs even negative
values of gc can lead to partial miscibility, albeit under different circumstances: in the
case of zero CPs such phase separation occurs for highly negative slopes g1, whereas
for off-zero limiting CPs highly positive slopes g1 at high ϕc are required, g0 then being
more negative than gc.

Quadratically Dependent Interaction Parameter

Here it is assumed that

g = g0 + g1ϕ + g2ϕ2  ,       gi = 0   for   i ≥ 3  . (21)

Summarizing the results of the Theoretical, the plane of interaction coefficients g2, ∆g2

is here divided into three regions I, II and III, as shown in Fig. 1, distinguished by how
many and what kind of limiting CPs a corresponding system with m → ∞ possesses: It
has a zero CP if located in I; an off-zero CP if contained in II; and two off-zero CPs
and one zero CP if positioned in III. Of particular interest will be the events occurring
at the boundaries where some CPs may appear or disappear.
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FIG. 2
A composite plot of values of interaction coefficients required at the limiting CPs for systems with a
linear interaction function. a: A plot of gc ≡ g0 vs g1 for zero CPs with ϕc = 0. b: A plot of gc, g0 and
g1 vs ϕc for off-zero CPs. The vertical scale is common for all listed interaction terms
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The simplest process – a switch in category – occurs at the I/II boundary (i.e., at
∆g2 = –1/6 for g2 < 1/12) where single CPs present on both sides of the line merely
differ in their type. By comparing the zero CP criterion (7) with the condition 1. of the
section “Off-zero” Critical Points (see Theoretical), it is recognized that the boundary
limiting the existence of zero CPs to ∆g2 >  –1/6, is identical to the boundary restricting
the single roots of the off-zero CPs to ∆g2 < –1/6. Therefore a zero limiting CP, existing
above it, disengages from the zero polymer concentration and starts moving to off-zero
ϕc as the line is crossed, thus becoming an off-zero limiting CP.

The events at the other two boundaries are more complex since they involve a
change in the total number of limiting CPs by two, typically associated with double
CPs. Indeed, the double-root character of the solutions of the critical condition (14)
along the I/III boundary has been established already in section “Off-zero” Critical
Points, suggesting the presence of double CPs. It is consistent with the diagram of Fig. 1
indicating that, when crossing this boundary upwards, the system should loose both of
its off-zero limiting CPs (which merge into a double limiting CP and then disappear
from real space), and keep only its zero CP.

As apparent from Fig. 1, two limiting CPs also disappear when crossing the boundary
III/II (at ∆g2 = –1/6 for g2 > 1/12) downwards. However, here the merger involves CPs
of different types: one zero CP and one off-zero CP. The double-root character of this
boundary could not have been discovered in the Theoretical where each category of
CPs was examined separately, but it will be documented below.

Examples by Model Calculation

In order to independently test the results derived above, cloud-point curves (CPCs)
have been generated by standard methods for solutions of a series of polymers with
various chain lengths, corresponding to different thermodynamic conditions (i.e., dif-
ferent combinations of interaction coefficients gi). Critical points, computed from for-
mulas (1) and (2), fit well the plotted CPCs in all cases, and are consistent with criteria
derived in this paper. The usual critical subscript c may be replaced by Z, L or H,
letters employed for zero, off-zero, and heterogeneous double limiting CPs, respec-
tively; and if need be, the finite analogues of these three types would be distinguished
by an apostrophy. In order to facilitate comparison, in all examples (except for Figs 9
and 10) the “constant” coefficient g0 is kept identical, g0 = 0.5 + 50/T.

To confirm the prediction9,10 that even a linear g(ϕ) suffices to produce the unfamiliar
off-zero limiting CP behavior, we examine the case of g1 = 2/3 (or, in quadratic nota-
tion, g2 = 0, ∆g2 = –2/3). Both the Eqs (19) and (20), and the criterion 1. of the “Off-
zero” Critical Points (see Theoretical) section, predict one off-zero CP but no zero CP.
The CPCs generated for chain lengths 10, 20, 100, and 1 000 and plotted with their CPs
in Fig. 3, indeed converge to a limiting CPC with its off-zero critical point L (❐ ) at ϕL = 1/2,
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gL = 1 and g0 = 2/3, i.e., at TL = 300 K, as required by Eqs (15), (18) and (20), and in
accord with Fig. 2. There are two noteworthy features:

A) the critical concentrations ϕc change remarkably little in the sequence of m’s rang-
ing from 10 to infinity;

B) also the convergence of Tc’s towards their infinite limit is quite fast above m ≈ 1 000.
For the quadratic g(ϕ) function, several examples are shown corresponding to the

systems located in various regions of the CP diagram of Fig. 1. Unless otherwise indi-
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FIG. 4
Phase diagrams for systems with g0 = 0.5 + 50/T, g1 = 0.1, g2 = 0.3. Notation is the same as in Fig. 3
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FIG. 3
Phase diagrams for systems with g0 = 0.5 + 50/T, g1 = 2/3, g2 = 0.0. CPCs and CPs (● ) computed
for chain lengths (m): 1 10, 2 20, 3 100, 4 1 000; ❑  a limiting CP for m → ∞
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cated, the quadratic coefficient is kept constant at g2 = 0.3, making the I/III criterion
G ≈ 0.0255; only the value of the difference ∆g2 is varied from 0.2 downwards, moving
the representative point along a vertical from the region I to III and to the boundary
III/II.

The CPCs for systems of type I (g1 = 0.1, g2 = 0.3, i.e., ∆g2 > G) with the same
sequence of chain lengths as in the previous case, are shown in Fig. 4. As predicted for
this region, it is a classical system with its only CP clearly approaching zero concentra-
tion as m → ∞. However, in contrast to the items A) and B) described above for the
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Phase diagrams for systems with g0 = 0.5 + 50/T, g1 = 0.38, g2 = 0.3. Notation is the same as in Fig. 3.
a: Curve 5, additional CPC for m = 10 000. b: Enlarged portion of a, depicting the new sigmoidal
binodal for m = 10 000. ◆  E1, E2, noncritical extrema; ▲ C1, C2 , cusp points of the binodal; . . . . tie-line
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“off-zero” CPs, the rate of convergence towards infinite-chain behavior is here much
slower, and the critical concentrations ϕc vary considerably for individual curves. In
fact, the critical temperature Tc for m → ∞ (i.e., Θ–temperature) is at 500 K, way out of
the scale of Fig. 4.

A system of type III is the most intriguing since it should combine two off-zero CPs
with a zero CP. The interaction coefficients chosen here are g1 = 0.38 and g2 = 0.3 (i.e.,
∆g2 = –0.08). Thus, the condition 2.2.3. (cf. “Off-zero” Critical Points in Theoretical)
for the region III, –1/6 < ∆g2 < G, is clearly satisfied; the same is apparent by plotting
the coordinates g2, ∆g2 into the diagram of Fig. 1. The CPCs computed for this system
are shown in Fig. 5a. To our initial dismay, the first four curves (1–4) obtained for the
above employed sequence of m = 10, 20, 100 and 1 000 showed each only a single
“off-zero” CP, eventually converging for m → ∞ to its limit L2 with ϕL2

 ≈ 0.5087 and
TL2

 ≈ 161.39 K. However, for the next higher examined chain length of m = 10 000 (curve
5), two additional CPs appeared on a newly formed sigmoidal binodal in the low-con-
centration area, hiding under the stable portion of curve 5 (that hardly differed from the
previous curve 4 for m = 1 000). The new CPC is enlarged in Fig. 5b. It has two noncritical
extrema Ei, each of them at equilibrium with the opposite cusp Ci. More importantly, it
also has two critical extrema (● ): a left metastable maximum Z′  on the upper curve,
representing a new “zero” CP, and a right unstable minimum L′  on the lower curve,
corresponding to a new “off-zero” CP. With m growing from 10 000 to ∞, the latter CP
hardly shifts, to the off-zero limiting critical point L1 (❐ ) at ϕL1

 ≈ 0.10782 and TL1
 ≈  127.03 K,

whereas its left “zero” twin moves out of the scope of Fig. 5b to ϕZ = 0 and TZ =
50/0.38 ≈ 131.58 K. As before, this system shows a much faster convergence of the
“off-zero” CPs, compared to the “zero” CPs. All three limiting CPs (❐ ) are depicted in
Fig. 5a.

The new sigmoidal binodal resembles the one observed earlier21 under similar cir-
cumstances, i.e., in binary systems with a quadratic interaction function, where its
origin was traced to a heterogeneous double critical point (HEDCP). In order to confirm
that the same genesis applies to our pair of a “zero” and an “off-zero” CP in Fig. 5b, twin
CPs have been computed from Eqs (1) and (2) in the range 0 < ϕc < 0.11 for a series of
chain lengths with m > 1 000, and the stability criterion, H, evaluated for each one of
them, using the relation21

H ≡ (mϕc
3)−1 + (1 − ϕc)−3 − 12g2  . (22)

Critical points for a sequence of m’s raising from 1 200 to ∞ are plotted in Fig. 6. The
resulting critical line (CL) forms a curve with a minimum H′  and two branches: the left
one (+) picturing the (meta)stable (H > 0) “zero” CPs, ending in the zero limiting
critical point Z, and the right one (×) tracing the unstable (H < 0) “off-zero” CPs,
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ending in the off-zero limiting CP L1. (Both Z and L1 also appear in Fig. 5a.) For the
chain length mH′ ≈ 1 185.4, both branches meet at the curve’s minimum H′  at ϕH′ ≈
0.07107 and TH′ ≈ 125.61 K, where H = 0. Evidently, these parameters specify an
HEDCP that exists in the system with m = mH′. When the chain length drops below mH′,
there are no CPs present in the low-concentration range, only a single “off-zero” CP at
ϕc > 1/2 (cf. Fig. 5a, curves 1–4). This example graphically reinforces the point that the
critical diagram of Fig. 1 is valid only for true limiting off-zero CPs; at finite m, every
point of the region III may not necessarily represent a system with two “off-zero” and
one “zero” CPs.

If the above scheme is truly consistent, the two branches of the CL of Fig. 6 should
retain their opposite stability character all along, unless there exists another HEDCP
where the CP stability would switch again. Both branches have been examined in this
respect, with the results confirming the expectations:

1) It can be proven that “zero” CPs of Fig. 6 stay metastable (or stable) even in their
limit Z for m → ∞ where ϕc → 0. Note that here the product mϕc

3 approaches a positive
zero since from Eq. (10) we have mϕc

3 = ϕcΦ2 → 0(+). Thus the stability criterion H (Eq. (22))
grows to ∞ but stays positive as ϕc → 0, confirming the (meta)stability of the zero
limiting critical point Z.

2) The right branch in Fig. 6 formed by “off-zero” CPs, on the other hand, ends for
m → ∞ in an off-zero limiting critical point L1 at ϕL1

 ≈ 0.10782 and TL1
 ≈ 127.03 K, in

accord with Eqs (14) and (15). A numerical check shows that even in this limit, the
stability criterion H of Eq. (22) stays negative, i.e., the right branch of the CL of Fig. 6
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FIG. 6
Critical line (CL) with ϕc < 0.11 for systems with interactions specified in Fig. 5: ❐  limiting CPs for
m → ∞; ■  an HEDCP for mH′ ≈ 1 185. Pairs of points raising from H′ to the limits Z and L1 are for
m = 1 200, 1 300, 1 400, 1 500, 2 000, 3 000, 4 000, 7 000, 10 000
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is unstable in its entire length. The question now is whether by modifying the interac-
tions (which until now have been kept fixed), one could close the gap in the CL be-
tween the two off-zero limiting CPs, namely the unstable one (L1 of Figs 5, 6), and the
stable one at ϕL2

 ≈ 0.51, TL2
 ≈ 161.4 K (L2 in Fig. 5a). Such a merger of two off-zero

limiting CPs of opposite stabilities should constitute another HEDCP, this time quali-
fied as a heterogeneous double limiting critical point (HEDLCP) since it exists for the
limit of m → ∞. It has to satisfy Eqs (14), (15), and the condition

g2 = [12(1 − ϕc)3]−1 (23)

derived for m → ∞ from the HEDCP criterion H = 0 (cf. Eq. (22)).
This supposition is indeed confirmed by the following example: With critical

polymer concentration of the prospective HEDLCP arbitrarily chosen to be ϕHL = 0.25,
g2 is fixed by Eq. (23) at g2 = 16/81 ≈ 0.1975309; Eq. (14) yields g1 = 8/27 ≈ 0.296296;
and from Eq. (15) one has for this point g0 ≈ 0.814815, i.e., THL ≈ 158.82 K if g0 = 0.5 + 50/T.
The CL computed with these interaction coefficients for a sequence of chain lengths is
displayed in Fig. 7. As anticipated, now the CL is continuous throughout its entire
length, and it has two extrema (H′ and H), each corresponding to one HEDCP. The
maximum is also a limiting off-zero critical point L, matching the above coordinates for
an HEDLCP, and separating the right (meta)stable branch from the middle unstable one
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FIG.7
CL for systems with interactions g0 = 0.5 + 50/T, g1 = 8/27, g2 = 16/81. Notation is identical to that
of Fig. 6; mH′ ≈ 526.91. Triplets of points raising from H′ and from the right end of the curve (ϕc =
0.29503, Tc = 157.21) towards Z and H ≡ L are for m = 530, 550, 600, 800, 1 000 (×), 2 000, 4 000,
10 000, 50 000
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(H′–H), both consisting of “off-zero” CPs. The minimum H′  of the CL, reached for mH′
≈ 526.91 at ϕH′ ≈ 0.1308 and TH′ ≈ 156.37 K, is of the same type as H′  of Fig. 6. It
separates the left branch of (meta)stable “zero” CPs from the middle branch of unstable
“off-zero” CPs. Finally, the left branch ends again in a zero limiting critical point Z at
ϕZ = 0 and g0 ≈ 0.796296, i.e., at TZ ≡ Θ ≈ 168.75 K.

Mathematically speaking, the HEDLCP (H ≡ L of Fig. 7) is a double root of the
off-zero critical Eq. (14), and in the limiting critical diagram of Fig. 1 it should lie on
the double-root boundary line separating I from III. Comparison of its parameters given
above with the diagram shows that indeed this is the case. More significantly, Eq. (23)
characterizing all off-zero HEDLCPs is equivalent to Eq. (17) derived for double off-
zero limiting critical roots, which proves the above statement in general.

After having clarified the physical meaning of the boundary line between the regions
I and III, we turn our attention to the horizontal ∆g2 = –1/6 separating for g2 > 1/12 the
regions II and III (cf. Fig. 1). From analyses in the Theoretical it is apparent that a
system with m → ∞, crossing the horizontal from III to II, should loose its zero as well
as one of its two off-zero limiting CPs, being left with a single remaining off-zero
limiting CP. Evidently, this could happen if the off-zero limiting critical point L1 of Fig. 6
merged with the zero limiting critical point Z. At the same time the opposite stabilities
of the CL parts H′–Z and H′–L1, squeezed between the approaching L1 and Z, should
guarantee that the collapsed CP at ϕc → 0 has a double-heterogeneous character.

A quick look at the HEDLCP criterion (23) seems to contradict such a possibility
since for ϕc → 0 Eq. (23) is satisfied only for g2 = 1/12 (i.e., at the cusp in the diagram
of Fig. 1 where all three regions meet together), but not for any g2 > 1/12. However,
this argument is wrong. Equation (23) was derived for off-zero HEDLCPs where both
merging limiting CPs are of off-zero nature. On the other hand, in the above-assumed
collapse at the III/II boundary one of the participants is a zero limiting CP. Clearly, one
has to inspect the general forms of critical Eqs (1) and (2), and of the HEDCP condition
which, for quadratic interactions and a polydisperse polymer solute, reads21

H ≡ mz(mz + 1 − 3mz) − 2mw
3 ϕc

3 [(1 − ϕ)−3 − 6g(2)] = 0  . (24)

A first-order perturbation theory, valid for very high chain lengths and small ϕc, can
be applied to Eqs (2) and (24). Closed expressions in terms of interaction coefficients
gi result for mH′ and ϕH′ associated with such a “zero”/“off-zero” HEDCP, and TH′ is
then obtained from Eq. (1) as usual. General conditions for polydisperse polymer solu-
tions are given in Appendix III as Eqs (A3.3) and (A3.4). In case of monodisperse
polymers they reduce to simple relations

mH′ ≈ 
(12g2 − 1)2

(1 + 6 ∆g2)3 (25)
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ϕH′ ≈ 
(1 + 6 ∆g2)
(12g2 − 1)   . (26)

It is immediately obvious that for the III/II boundary with ∆g2 = –1/6 and g2 > 1/12,
Eqs (25) and (26) indeed guarantee ϕH′ → 0(+) with mH′ simultaneously growing to ∞.
Interesting is, however, the rate of convergence: here the HEDCP’s concentration ϕH′
approaches zero as mH′

−1/3 [as can be seen by eliminating (1 + 6 ∆g2) from the two
equations], whereas for a regular single “zero” CP its ϕc varies as m–1/2. The reason for
different behavior along the two paths involves the interaction term (1 + 6 ∆g2) which
changes drastically in the former case but is kept constant in the latter.

The collapse of the critical line Z–H′–L1 of Fig. 6 to zero size at zero concentration
is illustrated in Fig. 8 displaying three other CLs, all of the same structure as that of
Fig. 6 (albeit without special marking for points Z, H′  and L1 to avoid overcrowding).
For each of the three CLs shown, the interaction coefficients are kept fixed at g2 = 0.3,
and g1 = 0.42 (curve 1), 0.44 (2) and 0.45 (3), respectively; g0 = 0.5 + 50/T as usual.
Obviously, the CL of Fig. 6 with g1 = 0.38 can be considered as part of the sequence,
although it is too remote for the scale of Fig. 8. Along each of the four CLs the chain
lengths grow from their minimal values of mH′ ≈ 1 190, 7 950, 44 000 and 180 000,
respectively, characterizing the curves’ minima, up to infinity, reached at the zero limi-
ting critical point Z at ϕc = 0 on the left side, and at the limiting off-zero critical point
L1 on the right side (end of the line). It is apparent that with ∆g2 dropping from –0.08
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FIG. 8
CLs for three high-molar mass systems with g0 = 0.5 + 50/T, g2 = 0.3, and ∆g2 = –0.12 (1), –0.14
(2), and –0.15 (3), converging to a single point at ϕc = 0 for ∆g2 = –1/6; ■  HEDCPs approximated
by Eqs (1), (25) and (26)
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(Fig. 6) to –0.12 (curve 1), –0.14 (2) and –0.15 (3), both the ϕc- and m-ranges of dis-
played curves shrink, ready to collapse into a point at ϕc → 0 and Tc  → 107.14 K for
m → ∞ and ∆g2 → –1/6. Full squares in Fig. 8 mark the HEDCPs approximated by
Eqs (25) and (26), together with Eq. (1). It is evident that the critical data contained in
Fig. 8 is consistent with the above theoretical predictions.

In the system of Figs 5a and 5b the effect of two additional CPs on the experimen-
tally determined CPC may be hard to detect: For m < 1 185 they do not exist at all; for
m > 1 185 they are present, born from an HEDCP, but the new sigmoidal binodal never
becomes stable. Note that even the zero limiting CP for m → ∞ (Z in Fig. 5a) stays
metastable, hiding under the stable portion of the CPC. However, not always behave
the new binodals so inconspiguously. An example of a very prominent effect of the
additional CPs of type III on the experimentally accessible CPC is shown in Figs 9a
and 9b. They are based on a quadratic g(ϕ) function applied to a polymer with m → ∞, and
the coefficients g1 and g2 were calculated with Eq. (2) after choosing suitable values for
the two off-zero limiting CP concentrations. The relevant values of g0 follow from Eq. (1)
and yield the two off-zero limiting critical temperatures.

FIG. 9
Limiting phase diagrams for m → ∞. Spinodal: light-drawn curve; binodal: heavy-drawn curve;
dashed line marks portions that are not stable; ❍  a zero limiting CP. a A III-type system with g1 ≈
0.30365, g2 ≈ 0.18243, G ≈ –0.11327, ∆g2 ≈ –0.12122, Θ ≈ 164.66 K; ❐  L1, L2, off-zero limiting
CPs; tie-lines: ● −−−−− ●  , ● − − − −●  . b A I/III type system with g1 ≈ 0.29570, g2 ≈ 0.18243, ∆g2 =
G ≈ –0.11327, Θ ≈ 169.09 K; ■  an off-zero HEDLCP
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In Fig. 9a with off-zero limiting CPs L1 and L2 at ϕc = 0.15 and 0.3, respectively,
some tie lines have been drawn in to further elucidate the course of the two binodals.
Some refer to equilibria between pure solvent and polymer solution (A), others to
equilibria between two polymer solutions of different concentrations (B). In this case
the “new” sigmoidal binodal protrudes through the “regular” one, becoming partly
stable. The two binodals intersect at T3 (nonvariant three-phase equilibrium). According
to classic rules14,22,23 the non-critical nonstable extrema (1′ , 2′) of the new binodal are
intersected by the spinodal, and coexist with cusps (1, 2) in other parts of the binodal.
[The seemingly missing cusps, that should accompany similar extrema on the regular
CPC, coincide with the temperature axis at ϕ = 0 (cf. Fig. 4j of ref.23 for finite m).]

In Fig. 9b the two off-zero limiting CPs have coincided in an HEDLCP (H = L)
defined by the I/III boundary line condition (17). Keeping the g2 value of Fig. 9a un-
changed, we find the concentration ϕHL ≈ 0.22985 from Eq. (17), the corresponding g1

and g0 with Eqs (1) and (2), and can then calculate the phase diagram. As usual, the
HEDCP is not amenable to direct experimental observation, and its proximity can only
be guessed from the shoulder on the stable part of the CPC.

Poly(2-methylpropene) Solutions

GPC data on ζ and mw, as well as critical concentrations measured with the phase-volume-ratio
method17, are available for solutions of high-molar mass poly(2-methylpropene) in benzene
and in diphenyl ether12,13. Assuming a quadratic g(ϕ), we may use Eq. (2) to evaluate
the interaction parameters g1 and g2 supposed independent of temperature. Curves of
ζ/mw against wc, the critical mass fraction of polymer, so obtained are shown in Fig. 10.
The off-zero limiting critical concentration ϕL can be computed with the equation ob-
tained by setting the bracketed expression in Eq. (13) equal to zero.

For diphenyl ether we find g1 ≈ –0.13861 and g2 ≈ –0.34089. Thus, ∆g2 ≈ –0.20228,
lower than –1/6. The calculated value for wL is as large as 0.02085, at a g0 value of
0.36027. Note that the limiting critical state is not quite a Θ-state, in which the second
virial coefficient vanishes. In the latter case we should have g0 – g1 = 1/2, instead of
0.49888.

Such an analysis for the benzene data leads to the light-drawn curve in Fig. 10, and
the extrapolation to zero ζ/mw covers a twice as large concentration range as with di-
phenyl ether. We obtain g1 ≈ 0.13083, g2 ≈ –0.04140, and ∆g2 ≈ –0.17223, close to –1/6.
The calculated off-zero limiting critical concentration is 0.01102, and the quantity g0 – g1

now equals 0.4999. The experimental errors involved render a firm conclusion im-
possible in this case, which is in line with the relevant remarks made by Flory and
Daoust9.

1682 Solc, Dusek, Koningsveld, Berghmans:

Collect. Czech. Chem. Commun. (Vol. 60) (1995)



CONCLUDING REMARKS

The conclusions drawn in the preceding sections do not depend on the particular g(ϕ)
function chosen here. The practically always found dependence of g on ϕ may have
various reasons, primary among which is the difference in size and shape of the mole-
cular species in the system. A simple expression for g(ϕ) is due to Staverman24 who
assumed the number of nearest-neighbor contacts to be proportional to the van der
Waals surface area of molecules and repeating units. The g(ϕ) function then takes a
simple closed form25 that can be expanded in a power series as in Eq. (3b)

g = a + 
bs + bh/T

1 − cϕ  = a + (bs + bh/T) (1 + cϕ + c2ϕ2 + c3ϕ3 + …)  , (27)

where a and bs are empirical entropy corrections, bh is an enthalpic term similar to β of
Eq. (8a), and c = 1 – s2/s1 is related to the two molecular surface areas s1 and s2.

Following the same procedure as used for Fig. 9a one finds a ≈ 0.21505, bs ≈
0.57986, bh ≈ 12.584 K, c ≈ 0.56569, and obtains a phase diagram, essentially identical
to Fig. 9a, except for small shifts in some variables; for instance, Θ is now 165.06 K,
versus 164.66 K before. The temperature T3 is the same: 160.5 K. On the other hand,
setting Θ and the concentrations and temperatures of the double CP equal to those of
Fig. 9b we obtain a ≈ 0.21641, bs ≈ 0.57158, bh ≈ 13.568 K, c ≈ 0.56492, and a phase
diagram that can hardly be distinguished from Fig. 9b.

These examples demonstrate that the phenomena discussed in this paper do not de-
pend on the chosen model for g(ϕ) and may be expected not to represent rare excep-
tions, in view of the quite reasonable parameter values employed.

0                  0.01               0.02               0.03              0.04

0.0003

0.0002

0.0001

ζ/mw

wc

wL, diphenyl ether
wL, benzene

FIG. 10
Experimental data for the quantity ζ/mw against wc, the critical mass fraction of poly(2-methyl-
propene). Solvent: benzene (light-drawn curve), diphenyl ether (heavy-drawn curve)
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APPENDIX I

After neglecting quadratic and higher terms in the bracket of Eq. (5a), the critical con-
centration can be written

ϕc ≈ (ζ/mw)1/2 [1 + 6 ∆g2 + 2ϕc(1 + 12 ∆g3)]−1/2 (A1.1)

which, after expanding the square-root bracket into a ϕc-series and substituting from
Eq. (A1.1) can be approximated as

ϕc ≈ 




ζ/mw

1 + 6 ∆g2





1/2

  1 + (ζ/mw)1/2 
1 + 12 ∆g3

(1 + 6 ∆g2)3/2


−1

  . (A1.2)

The spinodal condition requires more care: It is apparent from Eq. (A1.1) that, in
general, the product ϕcmw

1/2 ≡ Φ retains a finite non-zero positive value even as
mw → ∞ and ϕc → 0. Thus in order to satisfy Eq. (4a), here recast as

Φ [1 + 2 ∆g1 + ϕc(1 + 6 ∆g2) + ϕc
2(1 + 12 ∆g3) + O(ϕc

3)] + mw
−1/2 = 0  ; (A1.3)

the leading term in the bracket, 1 + 2 ∆g1, has to approach a negative zero, i.e.,

g0 → (1/2) + g1 + 0(+)  . (A1.4)

As expected, simultaneous matching of both Eqs (4a) and (5a) puts a stricter condition
on ∆g1 than just the inequality (6a).

Handling of (A1.3) is facilitated by introducing another finite non-zero product based
on Eq. (A1.4), namely Γ ≡ – (1 + 2 ∆g1)mw

1/2, where Γ ≥ 0; Eq. (A1.3) then becomes

Φ [−Γ + (1 + 6 ∆g2)Φ + (1 + 12 ∆g3)Φϕc + O(ϕc
2)] + 1 = 0  . (A1.5)

From Eq. (A1.5) it is apparent that an error would be committed had we treated Eq. (4a)
the same as Eq. (5a), namely, had we neglected the quadratic term in the bracket of
(4a).
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APPENDIX II

If the interaction function g(ϕ), Eq. (3b) is no stronger than quadratic (i.e., k < 3), Eq. (14)
is reduced to an equation cubic in ϕc ,

[6(1 − ϕc)2]−1 = 4g2ϕc − ∆g2  . (A2.1)

Criteria for the existence of the roots ϕc in the interval (0, 1) can be derived by compar-
ing separately the left- and right-hand sides of Eq. (A2.1) displayed as functions of ϕc

in Fig. 11. The former expression, denoted as Y, is a monotonous function growing
from Y = Y0 = 1/6 at ϕc = 0 to Y → ∞ for ϕc → 1, whereas the latter one, y, is a straight
line with an intercept y0 = –∆g2 and the slope s = 4g2. For two displayed cases, the
corresponding straights are marked by 1 and t.

It is apparent that when the intercept y0 is greater than Y0 (dashed line 1 in Fig. 11),
i.e., ∆g2 < –1/6, the line intersects the function Y in the physical interval 0 ≤ ϕc ≤ 1 once
and only once for any slope, positive, zero or negative. Hence, in this case there exists
a single meaningful solution ϕc of Eq. (A2.1). However, when the intercept y0 is smaller
than Y0, i.e., ∆g2 > –1/6, physically significant limiting root(s) can exist only with cer-
tain parameter boundaries. These are revealed by examining the tangent to the function
Y (line t in Fig. 11) with the slope S, given by

–0.2             0.0             0.2             0.4              0.6              0.8

 5

 4

 3

 2

 1

 0

–1

Y, y

ϕc

T

Y

ty0
t

Y0

y0

1

FIG. 11
Graph displaying the left- and right-hand sides of Eq. (A2.1), denoted as Y and y, respectively. For
the two cases shown here, straight line y is denoted by 1 and t. The intercepts cut off on the vertical
axis (ϕc = 0) are marked by 0 subscripts. A tangent t to the curve Y makes a contact with it at the
point T
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S ≡ dY/dϕc = [3(1 − ϕc
T)3]−1  , (A2.2)

where the superscript T specifies the coordinate of the contact point T. Conversely, the
slope S can be used to define the contact point by expressing its coordinates as

ϕc
T = 1 − (3S)−1/3          YT = (S2/3)1/3/2  , (A2.3)

which, in turn, determine the tangent’s intercept y0
t  at ϕc = 0 as

y0
t  = 

(3S)2/3

2
 − S  . (A2.4)

The crucial factor G(g2) can now be identified by comparing the parameters of the line
y (the right-hand side of Eq. (A2.1)) with those of the tangent t as

G(g2) ≡ 4g2 − (12g2)2/3/2  . (A2.5)

Three cases can be distinguished:
a) It is obvious that if the line y is identical with the tangent t (∆g2 =  −y0

t  and 4g2 = S,
i.e., ∆g2 = G), Eq. (A2.1) has a double root at

ϕc
T = 1 − (12g2)−1/3  . (A2.6)

Since the root has to be within the range 0 ≤ ϕc
T ≤ 1, the slope g2 cannot be lower than

1/12.
b) If the line y is shifted downwards, i.e., ∆g2 > G, there is no interaction with the

function Y, i.e., there are no physically relevant roots of Eq. (A2.1).
c) If, on the other hand, the line y is shifted upwards with ∆g2 dropping below G, i.e.,

∆g2 < G, and g2 ≥ 1/12, Eq. (A2.1) has initially two physically significant roots, one
lower and one greater than ϕc

T of Eq. (A2.6). As ∆g2 keeps further decreasing and
crosses the value of –1/6, the lower root passes through ϕc = 0 (cf. Eq. (A2.1)), thus
becoming physically irrelevant. Then the system is left with only one physical root (the
higher one of the original couple).
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APPENDIX III

In a polymer solution with quadratic interactions, approximate relations for a heteroge-
neous double critical point (HEDCP) in the range of low concentrations, ϕc → 0, are
derived from the HEDCP criterion, Eq. (24), and from the CP condition (2). From the
former relation we obtain

(mwϕc)3 ≈ 
mz(3mz − mz + 1)

2(12g2 − 1)   , (A3.1)

whereas the latter one yields

(mwϕc)2 ≈ 
mz

1 + 6 ∆g2
  . (A3.2)

By eliminating one or the other variable from Eqs (A3.1) and (A3.2), one can isolate the
effect the quadratic interactions have on the location of the HEDCP H′ (cf. Figs 6–8).
Specifically, we get

mz
1/2 (3 − ζ1) ≈ 2 

12g2 − 1

(1 + 6 ∆g2)3/2  , (A3.3)

ϕc ≈ 
ζ(3 − ζ1)

2(12g2 − 1) (1 + 6 ∆g2)  , (A3.4)

where ζ ≡ mz/mw and ζ1 ≡ mz+1/mz. These results confirm the significance of the hori-
zontal line ∆g2 → –1/6 (cf. Fig. 1) where, independently of the type of polymer mole-
cular-weight distribution, the HEDCP concentration ϕc approaches zero (cf. Eq. (A3.4))
for a polymer with its chain length mz growing to infinity. The rate of approach, how-
ever, does depend on the polymer’s m-distribution, as well as on the interaction coeffi-
cient g2.
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